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Abstract— Fast and safe navigation of dynamical systems
through a priori unknown cluttered environments is vital to
many applications of autonomous systems. However, trajectory
planning for autonomous systems is computationally intensive,
often requiring simplified dynamics that sacrifice safety and
dynamic feasibility in order to plan efficiently. Conversely,
safe trajectories can be computed using more sophisticated
dynamic models, but this is typically too slow to be used for
real-time planning. We propose a new algorithm FaSTrack:
Fast and Safe Tracking for High Dimensional systems. A
path or trajectory planner using simplified dynamics to plan
quickly can be incorporated into the FaSTrack framework,
which provides a safety controller for the vehicle along with
a guaranteed tracking error bound. This bound captures all
possible deviations due to high dimensional dynamics and
external disturbances. Note that FaSTrack is modular and can
be used with most current path or trajectory planners. We
demonstrate this framework using a 10D nonlinear quadrotor
model tracking a 3D path obtained from an RRT planner.

I. INTRODUCTION

As unmanned aerial vehicles (UAVs) and other au-
tonomous systems become more commonplace, it is essential
that they be able to plan safe motion paths through crowded
environments in real time. This is particularly crucial for
navigating through environments that are a priori unknown.
However, for many common dynamical systems, accurate
and robust path planning can be too computationally ex-
pensive to perform efficiently. In order to achieve real-
time planning, many algorithms use highly simplified model
dynamics or kinematics, resulting in a tracking error between
the planned path and the true high-dimensional system. This
concept is illustrated in Fig. 1, where the path was planned
using a simplified planning model, but the real vehicle cannot
track this path exactly. In addition, external disturbances (e.g.
wind) can be difficult to account for. Crucially, such tracking
errors can lead to dangerous situations in which the planned
path is safe, but the actual system trajectory enters unsafe
regions.

We propose the modular tool FaSTrack: Fast and Safe
Tracking, which models the navigation task as a sophisticated
tracking system that pursues a simplified planning system.
The tracking system accounts for complex system dynamics
as well as bounded external disturbances, while the simple
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Tracking System

Planning System

Fig. 1: A planning system using a fast but simple model,
followed by a tracking system using a dynamic model

planning system enables the use of real-time planning algo-
rithms. Offline, a precomputed pursuit-evasion game between
the two systems is analyzed using Hamilton Jacobi (HJ)
reachability analysis. This results in a tracking error function
that maps the initial relative state between the two systems
to the tracking error bound: the maximum possible relative
distance that could occur over time. This tracking error
bound can be thought of as a “safety bubble” around the
planning system that the tracking system is guaranteed to
stay within. Because the tracking error is bounded in the
relative state space, we can precompute and store a safety
control function that maps the real-time relative state to the
optimal safety control for the tracking system to “catch”
the planning system. It is important to note that the offline
computations are independent of the path planned in real-
time; what matters are the relative states and dynamics
between the systems, not the absolute state of the online
path.

In the online computation, the autonomous system senses
local obstacles, which are then augmented by the tracking
error bound to ensure that no potentially unsafe paths can
be computed. Next, a path or trajectory planner uses the
simplified planning model to determine the next desired state.
The tracking system then finds the relative state between
itself and the next desired state. If this relative state is nearing
the tracking error bound then it is plugged into the safety
control function to find the instantaneous optimal safety
control of the tracking system; otherwise, any controller may
be used. In this sense, FaSTrack provides a least-restrictive
control law. This process is repeated until the navigation goal
is reached.

Because we designed FaSTrack to be modular, it can be
used with existing fast path or trajectory planners, enabling
motion planning that is rapid, safe, and dynamically accurate.
In this paper, we demonstrate this tool by computing the
tracking error bound between a 10D quadrotor model af-
fected by wind and a linear 3D kinematic model. Online, the
simulated system travels through a static, windy environment
with obstacles that are only known once they are within the
limited sensing range of the vehicle. Combining this bound
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with a kinematic rapidly exploring random trees (RRT) fast
path planner [39], the system is able to safely plan and track
a trajectory through the environment in real time.

II. RELATED WORK

Motion planning is a very active area of research in the
controls and robotics communities [1]. In this section we
will discuss past work on path planning, kinematic planning,
and dynamic planning. A major current challenge is to find
an intersection of robust and real-time planning for general
nonlinear systems.

Sample-based planning methods like rapidly-exploring
random trees (RRT) [2], probabilistic road maps (PRM) [3],
fast marching tree (FMT) [4], and many others [5]–[7] can
find collision-free paths through known or partially known
environments. While extremely effective in a number of use
cases, these algorithms are not designed to be robust to model
uncertainty or disturbances.

Motion planning for kinematic systems can also be accom-
plished through online trajectory optimization using methods
such as TrajOpt [8] and CHOMP [9]. These methods can
work extremely well in many applications, but are generally
challenging to implement in real time for nonlinear dynamic
systems due to the computational load.

Model predictive control (MPC) has been a very successful
method for dynamic trajectory optimization in both academia
and industry [10]. However, combining speed, safety, and
complex dynamics is a difficult balance to achieve. Using
MPC for robotic and aircraft systems typically requires
model reduction to take advantage of linear programming or
mixed integer linear programming [11]–[13]; robustness can
also be achieved in linear systems [14], [15]. Nonlinear MPC
is most often used on systems that evolve more slowly over
time [16], [17], with active work to speed up computation
[18], [19]. Adding robustness to nonlinear MPC is being
explored through algorithms based on minimax formulations
and tube MPCs that bound output trajectories with a tube
around a nominal path (see [1] for references).

There are other methods of dynamic trajectory planning
that manage to cleverly skirt the issue of solving for optimal
trajectories online. One such class of methods involve motion
primitives [20], [21]. Other methods include making use
of safety funnels [22], or generating and choosing random
trajectories at waypoints [23], [24]. The latter has been
implemented successfully in many scenarios, but is risky in
its reliance on finding randomly-generated safe trajectories.

Recent work has considered using offline Hamilton-Jacobi
analysis to guarantee tracking error bounds, which can then
be used for robust trajectory planning [25]. A similar new
approach, based on contraction theory and convex optimiza-
tion, allows computation of offline error bounds that can
then define safe tubes around a nominal dynamic trajectory
computable online [26].

Finally, some online control techniques can be applied to
trajectory tracking with constraint satisfaction. For control-
affine systems in which a control barrier function can be
identified, it is possible to guarantee forward invariance of

the desired set through a state-dependent affine constraint
on the control, which can be incorporated into an online
optimization problem, and solved in real time [27].

The work presented in this paper differs from the robust
planning methods above because FaSTrack is designed to be
modular and easy to use in conjunction with any path or tra-
jectory planner. Additionally, FaSTrack can handle bounded
external disturbances (e.g. wind) and work with both known
and unknown environments with static obstacles.

III. PROBLEM FORMULATION

In this paper we seek to simultaneously plan and track
a trajectory (or path converted to a trajectory) online and in
real time. The planning is done using a kinematic or dynamic
planning model. The tracking is done by a tracking model
representing the autonomous system. The environment may
contain static obstacles that are either known a priori or can
be observed by the system within a limited sensing range
(see Section VI). In this section we will define the tracking
and planning models, as well as the goals of the paper.

A. Tracking Model

The tracking model is a representation of the autonomous
system dynamics, and in general may be nonlinear and
high-dimensional. Let s represent the state variables of the
tracking model. The evolution of the dynamics satisfy the
ordinary differential equation:

ds

dt
= ṡ = f(s, us, d), t ∈ [0, T ]

s ∈ S, us ∈ Us, d ∈ D
(1)

We assume that the system dynamics f : S × Us×D → S
are uniformly continuous, bounded, and Lipschitz continuous
in s for fixed control us. The control function us(·) and
disturbance function d(·) are drawn from the following sets:

us(·) ∈ Us(t) = {φ : [0, T ]→ Us : φ(·) is measurable}
d(·) ∈ D(t) = {φ : [0, T ]→ D : φ(·) is measurable}

(2)
where Us,D are compact and t ∈ [0, T ] for some T > 0.
Under these assumptions there exists a unique trajectory
solving (1) for a given us(·) ∈ Us [28]. The trajectories of
(1) that solve this ODE will be denoted as ξf (t; s, t0, us(·)),
where t0, t ∈ [0, T ] and t0 ≤ t. These trajectories will satisfy
the initial condition and the ODE (1) almost everywhere:

d

dt
ξf (t; s, t0, us(·)) = f(ξf (t; s, t0, us(·)), us(t))

ξf (t; s, t, us(·)) = s
(3)

B. Planning Model

The planning model is used by the path or trajectory
planner to solve for the desired path online. Kinematics
or low-dimensional dynamics are typically used depending
on the requirements of the planner. Let p represent the
state variables of the planning model, with control up. The
planning states p ∈ P are a subset of the tracking states s ∈



S. The dynamics similarly satisfy the ordinary differential
equation:

dp

dt
= ṗ = h(p, up), t ∈ [0, T ], p ∈ P, up ≤ up ≤ up (4)

Note that the planning model does not involve a disturbance
input. This is a key feature of FaSTrack: the treatment of
disturbances is only necessary in the tracking model, which
is modular with respect to any planning method, including
those that do not account for disturbances.

C. Goals of This Paper

The goals of the paper are threefold:
1) To provide a tool for precomputing functions (or look-

up tables) to determine a guaranteed tracking error
bound between tracking and planning models, and
optimal safety controller for robust motion planning
with nonlinear dynamic systems

2) To develop a framework for easily implementing this
tool with fast real-time path and trajectory planners.

3) To demonstrate the tool and framework in an example
using a high dimensional system

IV. GENERAL FRAMEWORK

The overall framework of FaSTrack is summarized in Figs.
2, 3, 4. The online real-time framework is shown in Fig.
2. At the center of this framework is the path or trajectory
planner; our framework is agnostic to the planner, so any
may be used (e.g. MPC, RRT, neural networks). We will
present an example using an RRT planner in Section VII.

Planning	
system

Tracking	
system

Path/trajectory	
planner

Hybrid	tracking	
controller

Environment 
(obstacles)

Augmented obstacles

Control

State

Planning State

Desired planning state

Online	computation	
(performed	at	every	time	iteration)

Tracking	
error	bound

Fig. 2: Online framework

When executing the online framework, the first step is
to sense obstacles in the environment, and then augment
the sensed obstacles by a precomputed tracking error bound
as described in Section V. This tracking error bound is a
safety margin that guarantees robustness despite the worst-
case disturbance. Augmenting the obstacles by this margin
can be thought of as equivalent to wrapping the planning
system with a “safety bubble”. These augmented obstacles
are given as inputs to the planner along with the current
state of the planning system. The planner then outputs the
next desired state of the planning system.

The tracking system is a model of the physical system
(such as a quadrotor). The hybrid tracking controller block
takes in the state of the tracking system as well as the desired

state of the planning system. Based on the relative state
between these two systems, the hybrid tracking controller
outputs a control signal to the tracking system. The goal of
this control is to make the tracking system track the desired
planning state as closely as possible.

The hybrid tracking controller is expanded in Fig. 3 and
consists of two controllers: a safety controller and a perfor-
mance controller. In general, there may be multiple safety
and performance controllers depending on various factors
such as observed size of disturbances, but for simplicity we
will just consider one safety and one performance controller
in this paper. The safety controller consists of a function
(or look-up table) computed offline via HJ reachability, and
guarantees that the tracking error bound is not violated,
despite the worst-case disturbance. In addition, the table
look-up operation is computationally inexpensive. When the
system is close to violating the tracking error bound, the
safety controller must be used to prevent the violation. On the
other hand, when the system is far from violating the tracking
error bound, any controller (such as one that minimizes fuel
usage), can be used. This control is used to update the
tracking system, which in turn updates the planning system,
and the process repeats.

Performance	
controller

Safety	controller

Hybrid	tracking	controller

Far	from	tracking	
error	violation

Near	tracking	
error	violationState

Desired	
planning	
state

Safety	
controller	

look-up	table

Tracking	error	
bound

Control

Fig. 3: Hybrid controller

To determine both the tracking error bound and safety
controller functions/look-up tables, an offline framework is
used as shown in Fig. 4. The planning and tracking system
dynamics are plugged into an HJ reachability computation,
which computes a value function that acts as the tracking er-
ror bound function/look-up table. The spatial gradients of the
value function comprise the safety controller function/look-
up table. These functions are independent of the online
computations—they depend only on the relative states and
dynamics between the planning and tracking systems, not on
the absolute states along the trajectory at execution time.

Planning	
system

Tracking	
system

Reachability	
precomputation Safety	

controller	
look-up	table

Tracking	error	
bound

Tracking 
dynamics

Planning 
dynamics

Value function

Offline	computation	(performed	once)

Fig. 4: Offline framework

In the following sections we will first explain the precom-
putation steps taken in the offline framework. We will then



walk through the online framework and provide a complete
example.

V. OFFLINE COMPUTATION

The offline computation begins with setting up a pursuit-
evasion game [29], [30] between the tracking system and
the planning system, which we then analyze using HJ
reachability. In this game, the tracking system will try to
“capture” the planning system, while the planning system
is doing everything it can to avoid capture. In reality the
planner is typically not actively trying to avoid the tracking
system, but this allows us to account for worst-case scenarios.
If both systems are acting optimally in this way, we want to
determine the largest relative distance that may occur over
time. This distance is the maximum possible tracking error
between the two systems.

A. Relative Dynamics

To determine the relative distance that may occur over
time we must first define the relative states and dynamics
between the tracking and planning models. The individual
dynamics are defined in Section III, equations (1) and (4).
The relative system is found by fixing the planning model
to the origin and finding the dynamics of the tracking model
relative to the planning model, as shown below.

r = s−Qp, ṙ = g(r, us, up, d) (5)

where Q matches the common states of s and p by
augmenting the state space of the planning model (as shown
in Section VII). The relative states r now represent the
tracking states relative to the planning states. Similarly, QT

projects the state space of the tracking model onto the
planning model: p = QT (s− r). This will be used to update
the planning model in the online algorithm.

B. Formalizing the Pursuit-Evasion Game

Now that we have the relative dynamics between the two
systems we must define a metric for the tracking error bound
between these systems. We do this by defining an implicit
surface function as a cost function l(r) in the new frame of
reference. Because the metric we care about is distance to
the origin (and thus distance to the planning system), this
cost function can be as simple as distance in position space
to the origin. An example can be seen in Fig. 5-a, where
l(r) is defined for a 4D quadrotor model tracking a 2D
kinematic planning model. The contour rings beneath the
function represent varying level sets of the cost function.
The tracking system will try to minimize this cost to reduce
the relative distance, while the planning system will do the
opposite.

Before constructing the differential game we must first
determine the method each player must use for making
decisions. We define a strategy for planning system as the
mapping γp : Us → Up that determines a control for the
planning model based on the control of the planning model.
We restrict γ to draw from only non-anticipative strategies
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Fig. 5: illustrative example of the precomputation steps for
a 4D quadrotor model tracking a 2D kinematic planning
model. All graphs are defined over a 2D slice of the 4D
system. a) Cost function l(r) defined on relative states as
distance to the origin, b) Value function V (r) computed
using HJ reachability, c) Level sets of l(r) (solid) and V (r)
(dashed). If the initial relative state is contained within the
dashed set the system is guaranteed to remain within the
corresponding solid set.

γp ∈ Γp(t), as defined in [31]. We similarly define the
disturbance strategy γd : Us → D, γd ∈ Γd(t).

We want to find the farthest distance (and thus highest
cost) that this game will ever reach when both players
are acting optimally. Therefore we want to find a mapping
between the initial relative state of the system and the
maximum possible cost achieved over the time horizon. This
mapping is through our value function, defined as

V (r, T ) = sup
γp∈Γp(t),γd∈Γd(t)

inf
us(·)∈Us(t)

{
max
t∈[0,T ]

l
(
ξg(t; r, 0, us(·), γp[us](·), γd[us](·))

)}
(6)

By implementing HJ reachability analysis we solve for
this value function over the time horizon. If the control
authority of the tracking system is powerful enough to always
eventually reach the planning system, this value function
will converge to an invariant solution for all time, i.e.
V∞(r) := limT→∞ V (r, T ). An example of this converged
value function is in Fig. 5-b. In the next section we will prove
that the sub-level sets of this value function will map initial
relative states to the guaranteed furthest possible tracking
error over all time, as seen in Fig. 5-c.

In the context of the online framework, the value function
V∞(r) is the tracking error bound function. The spatial
gradients of the value function, ∇V∞(r), comprise the safety
controller function (as described in Section VI). When the
framework is executed on a computer, these two functions
are saved as look-up tables over a grid representing the state
space of the relative system.

C. Invariance of Converged Value Function

Proposition 1: Suppose that the value function converges,
and define

V∞(r) := lim
T→∞

V (r, T ) (7)

Then ∀t1, t2 with t2 ≥ t1,

V∞(r) ≥ V∞
(
ξ∗g(t2; r, t1)

)
,where (8)

ξ∗g(t; r, 0) := ξg(t; r, 0, u
∗
s(·), u∗p(·), d∗(·))) (9)



u∗s(·) = arg inf
us(·)∈Us(t)

{
max
t∈[0,T ]

l(ξg(t; r, 0, us(·), u∗p(·), d∗(·)))
} (10)

u∗p(·) := γ∗p [us](·) = arg sup
γp∈Γp(t)

inf
us(·)∈Us(t)

{
max
t∈[0,T ]

l(ξg(t; r, 0, us(·), γp[us](·), d∗(·)))
} (11)

d∗(·) = arg sup
γd∈Γd(t)

sup
γp∈Γp(t)

inf
us(·)∈Us(t)

{
max
t∈[0,T ]

l(ξg(t; r, 0, us(·), γp[us](·), γd[us](·)))
} (12)

Proposition 1 proves that every level set of V∞(r) is
invariant under the following conditions:

1) The tracking system applies the optimal control which
tries to track the planning system;

2) The planning system applies (at worst) the optimal
control that tries to escape from the tracking system;

3) The tracking system experiences (at worst) the optimal
disturbance that tries to prevent successful tracking.

In practice, conditions 2 and 3 may not hold; the result
of this is only advantageous to the tracking system and
will make it easier to stay within its current level set of
V∞(r), or to move to a smaller invariant level set of V∞(r).
The smallest invariant level set corresponding to the value
V := minr V∞(r) can be interpreted as the smallest possible
tracking error of the system. The tracking error bound is
given by1 the set B = {r : V∞(r) ≤ V }. This tracking error
bound in the planner’s frame of reference is given by:

Bp(s) = {p : V∞(s−Qp) ≤ V } (13)

This is the tracking error bound that will be used in the
online framework as shown in Fig. 2. Within this bound the
tracking system may use any controller, but on the border of
this bound the tracking system must use the safety optimal
controller. We now prove Proposition 1.

Proof: Without loss of generality, assume t1 = 0. By
definition, we have

V∞(r) = lim
T→∞

max
t∈[0,T ]

l(ξ∗g(t; r, 0)) (14)

By time-invariance, for some t2 > 0,

V∞(r) = lim
T→∞

max
t∈[−t2,T ]

l(ξ∗g(t; r,−t2))

≥ lim
T→∞

max
t∈[0,T ]

l(ξ∗g(t; r,−t2))
(15)

where the sub-interval [−t2, 0) has been removed in the last
line. Next, by time invariance again, we have

ξ∗g(t; r,−τ) = ξ∗g(t; ξ∗g(0; r,−t2), 0)

= ξ∗g(t; ξ∗g(t2; r, 0), 0)
(16)

Now, (15) implies

V∞(r) ≥ lim
T→∞

max
t∈[0,T ]

l(ξ∗g(t; ξ∗g(t2; r, 0), 0))

= V∞(ξ∗g(t2; r, 0))
(17)

1In practice, since V∞ is obtained numerically, we set B = {r :
V∞(r) ≤ V + ε} for some suitably small ε > 0

Remark 1: Proposition 1 is very similar to well-known
results in differential game theory with a slightly different
cost function [32], and has been utilized in the context of
using the subzero level set of V∞ as a backward reachable
set for tasks such as collision avoidance or reach-avoid games
[31]. In our work we do not assign special meaning to
any particular level set, and instead consider all level sets
at the same time. This effectively allows us to perform
solve many simultaneous reachability problems in a single
computation, thereby removing the need to check whether
resulting invariant sets are empty, as was done in [25].

VI. ONLINE COMPUTATION

Algorithm 1 describes the online computation. The inputs
are the tracking error function V∞(r) and the safety control
look-up function ∇V∞(r). Note that when discretized on a
computer these functions will be look-up tables; practical
issues arising from sampled data control can be handled
using methods such as [33]–[35] and are not the focus of
our paper.

Lines 1-3 initialize the computation by setting the planning
and tracking model states (and therefore the relative state)
to zero. The tracking error bound in the planning frame of
reference is computed using (13). Note that by initializing
the relative state to be zero we can use the smallest possible
invariant Bp for the entire online computation. The tracking

Algorithm 1: Online Trajectory Planning
1: Initialization:
2: p = s = r = 0
3: Bp(0) = {p : V∞(0) ≤ V }
4: while planning goal is not reached do
5: Tracking Error Bound Block:
6: Oaug ← Osense + Bp(0)
7: Path Planner Block:
8: pnext ← j(p,Oaug)
9: Hybrid Tracking Controller Block:

10: rnext = s−Qpnext
11: if rnext is on boundary Bp(0) then
12: use safety controller: us ← u∗s in (18)
13: else
14: use performance controller:
15: us ← desired controller
16: end if
17: Tracking Model Block:
18: apply control us to vehicle for a time step of ∆t,

save next state as snext
19: Planning Model Block:
20: p = QT snext
21: check if p is at planning goal
22: reset states s = snext, r = 0
23: end while

error bound block is shown on lines 5-6. The sensor detects
obstacles Osense within the sensing distance around the



vehicle. The sensed obstacles are augmented by Bp(0) using
the Minkowski sum. This is done to ensure that no unsafe
path can be generated2.

The path planner block (lines 7-8) takes in the planning
model state p and the augmented obstacles Oaug , and outputs
the next state of the planning system pnext. The hybrid
tracking controller block (lines 9-16) first computes the
updated relative state rnext. If the rnext is on the tracking
bound Bp(0), the safety controller must be used to remain
within the safe bound. The safety control is given by:

u∗s = arg min
us∈Us

max
up∈Up,d∈D

∇V (rnext) · g(rnext, us, up, d)

(18)
For many practical systems (such as control affine systems),
this minimization can be found extremely quickly.

If the relative state is not on the tracking boundary,
a performance controller may be used. For the example
in Section VII the safety and performance controllers are
identical, but in general this performance controller can suit
the needs of the individual applications.

The control u∗s is then applied to the physical system in
the tracking block (lines 17-18) for a time period of ∆t. The
next state is saved as snext. This then updates the planning
model state in the planning model block (lines 19-22). We
repeat this process until the planning goal has been reached.

VII. 10D QUADROTOR RRT EXAMPLE

We demonstrate this framework with a 10D near-hover
quadrotor developed in [36] tracking a 3D point source path
generated by an RRT planner [39]. First we perform the
offline computations to acquire the tracking error bound and
safety controller look-up tables. Next we set up the RRT to
convert paths to simple 3D trajectories. Finally we implement
the online framework to navigate the 10D system through a
3D environment with static obstacles.

A. Precomputation of 10D-3D system

First we define the 10D dynamics of the tracking quadrotor
and the 3D dynamics of a holonomic vehicle:

ẋ
v̇x
θ̇x
ω̇x
ẏ
v̇y
θ̇y
ω̇y
ż
v̇z


=



vx + dx
g tan θx
−d1θx + ωx
−d0θx + n0ax

vy + dy
g tan θy
−d1θy + ωy
−d0θy + n0ay

vz + dz
kTaz − g



 ẋ
ẏ
ż

 =

 bx
by
bz



(19)
where states (x, y, z) denote the position, (vx, vy, vz) denote
the velocity, (θx, θy) denote the pitch and roll, and (ωx, ωy)
denote the pitch and roll rates. The controls of the 10D
system are (ax, ay, az), where ax and ay represent the

2The minimum allowable sensing distance is m = 2Bp(0) + ∆x, where
∆x is the largest step in space that the planner can make in one time step.

desired pitch and roll angle, and az represents the vertical
thrust. The 3D system controls are (bx, by, bz), and represent
the velocity in each positional dimension. The disturbances
in the 10D system (dx, dy, dz) are caused by wind, which
acts on the velocity in each dimension. Note that the states
of the 3D dynamics are a subset of the 10D state space; the
matrix Q used in the online computation matches the position
states of both systems. Next the relative dynamics between
the two systems is defined using (5):

ẋr
v̇x
θ̇x
ω̇x
ẏr
v̇y
θ̇y
ω̇y
żr
v̇z


=



vx − bx + dx
g tan θx
−d1θx + ωx
−d0θx + n0ax
vy − by + dy
g tan θy
−d1θy + ωy
−d0θy + n0ay
vz − bz + dz
kTaz − g


(20)

The values for parameters d0, d1, n0, kT , g used were: d0 =
10, d1 = 8, n0 = 10, kT = 0.91, g = 9.81. The 10D control
bounds were |ax|, |ay| ≤ 10 degrees, 0 ≤ az ≤ 1.5g m/s2.
The 3D control bounds were |bx|, |by|, |bz| ≤ 0.5 m/s. The
disturbance bounds were |dx|, |dy|, |dz| ≤ 0.1 m/s.

Next we follow the setup in section V to create a cost
function, which we then evaluate using HJ reachability until
convergence to produce the invariant value function as in
(6). Historically this 10D nonlinear relative system would
be intractable for HJ reachability analysis, but using new
methods in [37], [38] we can decompose this system into
3 subsystems (for each positional dimension). Doing this
also requires decomposing the cost function; therefore we
represent the cost function as a 1-norm instead of a 2-norm.
This cost function as well as the resulting value function can
be seen projected onto the x, y dimensions in Fig. 6.

Fig. 6 also shows 3D positional projections of the mapping
between initial relative state to maximum potential relative
distance over all time (i.e. tracking error bound). If the real
system starts exactly at the origin in relative coordinates, its
tracking error bound will be a box of V = 0.81 m in each
direction. Slices of the 3D set and corresponding tracking
error bounds are also shown in Fig. 7. We save the look-up
tables of the value function (i.e. the tracking error function)
and its spatial gradients (i.e. the safety controller function).

B. Online Planning with RRT and Sensing

Our precomputed value function can serve as a tracking
error bound, and its gradients form a look-up table for the
optimal tracking controller. These can be combined with any
planning algorithm such as MPC, RRT, or neural-network-
based planners in a modular way.

To demonstrate the combination of fast planning and
provably robust tracking, we used a simple multi-tree RRT
planner implemented in MATLAB modified from [39]. We
assigned a speed of 0.5 m/s to the piecewise linear paths
obtained from the RRT planner, so that the planning model



Fig. 6: On the left are the cost and value functions over a 2D slice of the 10D relative state space, with contour lines showing
three level sets of these functions. On the right are 3D projections of these level sets at the same slice (vx, vy, vz) = [1,−1, 1]
m/s, (θx, ωx, θy, ωy) = 0. The solid boxes show initial relative states, and the transparent boxes show the corresponding
tracking error bound. In practice we set the initial relative states to 0 to find the smallest invariant tracking error bound.

Fig. 7: Various 3D slices of the 10D relative states (solid)
and the corresponding tracking error bound (transparent)

is as given in (19). Besides planning a path to the goal,
the quadrotor must also sense obstacles in the vicinity. For
illustration, we chose a simple virtual sensor that reveals
obstacles within a range of 2 m in the x, y, or z directions.

Once an obstacle is sensed, the RRT planner replans while
taking into account all obstacles that have been sensed so
far. To ensure that the quadrotor does not collide with the
obstacles despite error in tracking, planning is done with
respect to augmented obstacles that are “expanded” from the
sensed obstacles by V in the x, y, and z directions.

On an unoptimized MATLAB implementation on a desk-
top computer with a Core i7-2600K CPU, each iteration
took approximately 25 ms on average. Most of this time
is spent on planning: obtaining the tracking controller took
approximately 5 ms per iteration on average. The frequency
of control was once every 100 ms.

Fig. 8 shows the simulation results. Four time snapshots
are shown. The initial position is (−12, 0, 0), and the goal
position is (12, 0, 0). The top left subplot shows the entire
trajectory from beginning to end. In all plots, a magenta star
represents the position of the planning model; its movement
is based on the paths planned by RRT, and is modeled
by a 3D holonomic vehicle with a maximum speed. The
blue box around the magenta star represents the tracking
error bound. The position of the tracking model is shown
in blue. Throughout the simulation, the tracking model’s
position is always inside the tracking error, in agreement
with Proposition 1. In addition, the tracking error bound
never intersects with the obstacles, a consequence of the

(a)

(b) (c)
Fig. 8: Numerical simulation. The tracking model trajectory
is shown in blue, the planning model position in magenta,
unseen obstacles in gray, and seen obstacles in red. The
translucent blue box represents the tracking error bound.
The top left subplot shows the entire trajectory; the other
subplots zoom in on the positions marked in the top left
subplot. The camera angle is also adjusted to illustrate
our theoretical guarantees on tracking error and robustness
in planning. A video of this simulation can be found at
https://youtu.be/ZVvyeK-a62E

RRT planner planning with respect to a set of augmented
obstacles (not shown). In the latter two subplots, one can see
that the quadrotor appears to be exploring the environment
briefly before reaching the goal. In this paper, we did not
employ any exploration algorithm; this exploration behavior
is simply emerging from replanning using RRT whenever a
new part (a 3 m2 portion) of an obstacle is sensed.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we introduced our new tool FaSTrack:
Fast and Safe Tracking. This tool can be used to add
robustness to various path and trajectory planners without
sacrificing fast online computation. So far this tool can be
applied to unknown environments with a limited sensing



range and static obstacles. We are excited to explore several
future directions for FaSTrack in the near future, including
exploring robustness for moving obstacles, adaptable error
bounds based on external disturbances, and demonstration
on a variety of planners.
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